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ABSTRACT
Space-time kernel density estimation (STKDE) commonly is used for space-time cluster detection.
But, this technique might be limited because it does not take into account an underlying
population at risk for observed events. A space-time relative risk function (STRRF) can help
overcome this limitation by allowing a comparison of each kernel density of observations with
that of controls. This paper proposes a cross-STRRF to identify spatio-temporal locations that
experience statistically significant changes in their density of events. With events organized in
a space-time voxel structure, the cross-STRRF evaluates space-time patterns by comparing event
occurrences at a spatial location in a previous time period with ones in its future as well as with
its spatial neighbors in its contemporaneous time period. The test statistics of the cross-STRRF
values in each voxel are obtained with a permutation test in which cases and controls are
shuffled within each time period to maintain the space-time envelope of events. An application
to assault crime incidents in the city of Plano, Texas between 2008 and 2012 illustrates that the
cross-STRRF and its significance test results emphasize spatio-temporal changes in event density
rather than constantly focusing on high density regions, which STKDE does.
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1. Introduction

Space-time cluster detection seeks to find time and
regions where events are densely located, and to statis-
tically test whether or not the dense event pattern
deviates from a random chance occurrence. Because
a space-time cluster can reveal a critical and fundamen-
tal aspect of a spatio-temporal process, space-time clus-
ter detection has been utilized as one of the basic tools in
a wide range of research fields, including criminology,
epidemiology, demography, regional science, and geo-
graphy (e.g. Berk &MacDonald, 2009; Johnson, Bowers,
& Johnson, 2008; Nakaya & Yano, 2010; Rey, Mack, &
Koschinsky, 2012; Tompson & Townsley, 2010).
Recently, space-time kernel density estimation
(STKDE) has been utilized for space-time cluster detec-
tion, with an ability to explicitly illustrate local varia-
tions in a density of events (e.g. Brunsdon, Corcoran, &
Higgs, 2007; Delmelle, Dony, Casas, Jia, & Tang, 2014;
Nakaya & Yano, 2010). However, STKDE deals with
space-time clusters as a summary of density for an entire
study area at a particular time, rather than quantifica-
tion of density changes over time, although the levels of
event densities at a particular time and location influ-
ence their levels at their neighbors and in their future

(Rey et al., 2012). STKDE also shows only density (i.e.
the number of events per area), and does not support
comparisons of an observed process with a reference
process (i.e. events per target) (Eck & Weisburd, 1995).
For example, STKDE clusters might be an outcome of an
underlying population at risk spatio-temporal process
(i.e. spatial and temporal distributions of a population at
risk). This weakness stimulated the development of the
space-time relative risk function (STRRF) (Zhang et al.,
2011), which is an extension of a spatial relative risk
function (Bithell, 1990; Kelsall & Diggle, 1995a). STRRF
compares kernel densities of observations (or events)
and controls (i.e. events in a comparison group), and
identifies space-time clusters while considering an
underlying population at risk.

Finding proper controls for STRRF is not easy (Boggs,
1965), although a choice of controls plays a critical role in
this type of case-control cluster analyses (Wheeler, 2007).
Several space-time cluster detection methods have been
developed to reflect inhomogeneous risk of cases (e.g.
Mohler, Short, Brantingham, Schoenberg, & Tita, 2011;
Zhuang, Ogata, & Vere-Jones, 2002), but still many meth-
ods (e.g. Kulldorff, 1997, 2001; Rogerson, 1997) largely rely
on population counts in a fixed time and a spatial unit (e.g.
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decennial census data). However, these population counts
might lead to analysis results that deviate considerably
from reality because controls constructed with these popu-
lation counts assume a static and homogenous risk within
spatio-temporal units for which data have been collected
(e.g. annual estimates based on census tracts) (Kim &
O’Kelly, 2008). In other words, controls cannot necessarily
reflect a continuously varying population at risk. In addi-
tion, a fixed underlying population at risk in space and
time considers spatio-temporal phenomena as occurring at
a single snapshot in time, although event occurrences in
the past have a great impact on future occurrences in
a region (Rey et al., 2012). Furthermore, a certain type of
event (e.g. assault incidents) encounters difficulty in having
its underlying population at risk defined with aggregated
night-time population counts (e.g. decennial census data),
often requiring disaggregated micro-level data for a proper
definition (Schubert, 2009). Also note that studies increas-
ingly propose approaches to construct a more appropriate
population at risk, such asMburu and Helbich (2016), that
adjust census population with commuter information (a
commuter-harmonized ambient population).

This paper proposes a cross-STRRF, a modified ver-
sion of STRRF (Zhang et al., 2011), in order to capture
spatio-temporal locations that experience statistically sig-
nificant changes in their density of events. This cross-
STRRF considers the effect of past events on the occur-
rence of future events and on its spatial neighbors, which
allows a researcher to quickly capture sudden changes in
a density of events. In addition, because this cross-
STRRF does not require additional data for representing
an underlying population at risk, phenomena with
a limited availability of population data (i.e. the control)
can be seamlessly analyzed with it. The utility of this
cross-STRRF is demonstrated with its application to
assault crime incidents in the city of Plano, Texas during
a 5 year period from 2008 to 2012. In this application, the
characteristics of this cross-STRRF are illustrated, and
cross-STRRF results are compared to STKDE results
based on a volume rendering approach. Two different
test statistics for this cross-STRRF, which include local
tests for each voxel and global tests for each time period,
are obtained with a permutation test, and visualized
using an isosurface approach and graphs.

2. Literature review

Space-time cluster detection methods generally are cate-
gorized into retrospective and prospective analyses based
on their use of data and corresponding continued ana-
lyses in space-time (Sonesson & Bock, 2003). Because
a retrospective analysis finds space-time clusters based
on an entire dataset during a single analysis (e.g. Diggle,

Chetwynd, Häggkvist, & Morris, 1995; Jacquez, 1996;
Knox & Bartlett, 1964; Mantel, 1967), it is difficult to
use to evaluate cluster changes over time because their
results provide only a snapshot depiction (Rey et al.,
2012). In addition, a retrospective analysis is unable to
identify clusters at specific locations and time periods
(Scholz & Lu, 2014), and, moreover, their results might
be biased when the underlying population at risk is not
constant over space (Paiva, Assunção, & Simões, 2015).

A prospective analysis is useful to find newly emer-
ging and continuously changing clusters in space-time
by comparing new information with prior data
(Rogerson, 1997). However, the previous methods in
this perspective have their own limitations. Specifically,
although cumulative sum (CUSUM) statistics
(Rogerson, 1997, 2001; Rogerson & Sun, 2001) are
used to detect emerging space-time clusters for point
phenomena (e.g. crime and disease) during specific
time periods, they cannot identify the locations of
these clusters. The space-time scan statistic (Kulldorff,
2001) also derived expected counts from information
in a fixed time interval and a bounded enumeration
unit (e.g. Gao, Guo, Liao, Webb, & Cutter, 2013;
Nakaya & Yano, 2010), which yields a substantial bias
in the resulting expected counts (Kim & O’Kelly, 2008).

Recent advances in prospective space-time cluster
detection analyses overcome weaknesses of the aforemen-
tioned methods, and can provide efficiency in detecting
spatio-temporal clusters. Specifically, a bootstrap-based
surveillance model (Kim & O’Kelly, 2008) overcomes the
boundary restriction of the space-time scan statistics,
which raises the issue of population at risk data.
A windowed nearest neighbor approach (Pei, Zhou, Zhu,
Li, & Qin, 2010) adopts the concept of the windowed k th

nearest distance in order to avoid subjectivity in defining
scanning windows in a space-time scan statistic. However,
this approach is unable to distinguish a space-time cluster
from a random pattern due to its lack of including the
population at risk. Recently, prospective surveillancemeth-
ods have been posited that include a cumulative surface
based on local Knox scores to identify emerging clusters of
events (Paiva et al., 2015). However, determining an opti-
mal bandwidth for a cumulative surface and its effects need
to be further investigated because the shape of the cumu-
lative surface highly depends on the employed bandwidth.
In addition, Rey et al. (2012) introduce new exploratory
methods for space-time analysis, which are a conditional
spatial Markov chain and its extension with a joint spatial
Markov chain. Their methods quantify the dynamics of
events in space and time by relating the probabilities of
events at each location in a future period to those in
a preceding period, and also by considering the impact of
each location on its spatial neighbors.
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Although space-time analyses increasingly have been
appearing in the literature during the last two decades
(e.g. An et al., 2015; Hu, Griffith, & Chun, 2018), many
studies still are limited in their evaluations of cluster
changes in space and time for a number of reasons. First,
all retrospective analyses and some prospective analyses
(e.g. Rey et al., 2012; Rogerson & Sun, 2001) are not able to
specify locations and time periods where and when space-
time clusters occur. Second, because some space-time
cluster detection methods (e.g. Nakaya & Yano, 2010; Pei
et al., 2010) are limited in their consideration of population
at risk, their space-time clustering outcomes can be differ-
entiated from a random pattern due to chance under
a homogenous assumption about population. Third, popu-
lation at risk usually is derived from data that are collected
in a bounded enumeration unit in a fixed time interval (e.g.
Kulldorff, 1997, 2001; Rogerson, 1997). Thus, population
at risk might deviate considerably from reality.

Visualizing space-time clusters is also a challenge.
While the concept of the space-time cube that originated
in time-geography diagrams (Hägerstraand, 1970) is useful
for a visualization of continuous spatio-temporal phenom-
ena, representing clusters with voxels in the space-time
cube still is challenging due to its four-dimensional space
nature: geographic space, time, and its value. The isosur-
face approach is one of the effective ways to visualize values
at voxels (Brunsdon et al., 2007). Specifically, this approach
connects voxels with a cutoff value, which is similar to the
isoline in a two-dimensional space. However, the cutoff
valuemainly depends on an arbitrary decision by research-
ers (Mclafferty, Williamson, & McGuire, 2000), and
a representation of overlaid isosurfaces with several cutoff
values is difficult to do because the insides of isosurfaces
cannot be displayed. Recently, a volume rendering
approach successfully provided intuitive representations
of cluster changes over time and space in a space-time
cube (e.g. Delmelle et al., 2014; Nakaya & Yano, 2010).
This volume rendering approach makes the value of opa-
city at each voxel high for low values, and, in contrast, low
for high values, so that voxels with high values are visible as
a solid volume through completely or partially transparent
voxels (Nakaya & Yano, 2010).

3. Methods

3.1 Space-time kernel density estimation and
space-time relative risk function

This section begins with a review of STKDE and
STRRF that provides the fundamental components for
the cross-STRRF. Kernel density estimation (KDE) is
a commonly used method to estimate the density of
events in space (Silverman, 1986), which can be utilized

to summarize and visualize spatial patterns of events
and clusters (e.g. Chainey & Ratcliffe, 2005). Density at
the point x; yð Þ can be estimated with

f̂ x; yð Þ ¼ 1
nh21

Xn
i¼1

k1
x � xi
h1

;
y� yi
h1

� �
; (1)

where k1 �; �ð Þ is a probability density function, h1 is the
bandwidth of space, and n is the number of events. STKDE
results from an addition of the temporal dimension to
KDE under the first-order separable assumption between
space and time (Chun, 2014; Gabriel, Rowlingson, &
Diggle, 2013; Griffith, 2012; Schoenberg, 2004).

f̂ x; y; tð Þ ¼ m x; yð Þ � μ tð Þ; (2)

where m x; yð Þ and μ tð Þ denote spatial and temporal
density, respectively. Under the assumption, STKDE
can be estimated with (Brunsdon et al., 2007;
Delmelle et al., 2014; Nakaya & Yano, 2010)

f̂ x; y; tð Þ ¼ 1
nh2s ht

Xn
i¼1

ks
x � xi
hs

;
y� yi
hs

� �
kt

t � ti
ht

� �
;

(3)

where hs and ht are the spatial and temporal band-
widths, respectively, and ks �; �ð Þ and kt �ð Þ are the spatial
and temporal kernel density functions, respectively.

STKDE is a technique for generating the density
distribution of events rather than detecting clustering
(Pei et al., 2010). If an underlying population at risk
for spatio-temporal events is uniformly distributed
across an entire study area, a simple STKDE map is
a useful way to find the clusters of events. However,
in most empirical cases, the population at risk
usually does not conform to a uniform distribution.
That is, an individual point has its corresponding
risk that varies across spatio-temporal locations. For
example, in the context of a spatial domain only, the
number of residential burglary incidents in a given
spatial unit is closely related to the number of house-
holds in that unit. Thus, the densities of both cases
and controls are estimated using KDE in order to
find significant clusters by excluding clusters occur-
ring by random chance. The ratios of case densities
to control densities are regarded as a “relative risk
function (RRF)” (Bithell, 1990). A RRF can be
extended to a STRRF by adding a temporal domain,
which is represented by the ratio of the following
case-to-control STKDE equation (Zhang et al., 2011):

r x; y; tð Þ ¼ f̂ case x; y; tð Þ
ĝcontrol x; y; tð Þ : (4)

Using the logarithm of r x; y; tð Þ is recommended in order
to reduce the effects of extreme values as well as to

CARTOGRAPHY AND GEOGRAPHIC INFORMATION SCIENCE 3



improve the symmetry of the risk function (Kelsall &
Diggle, 1995a, 1995b; Zhang et al., 2011). The following
logarithm form of STRRF is used in this article:

ρ x; y; tð Þ ¼ ln
f̂ case x; y; tð Þ
ĝcontrol x; y; tð Þ : (5)

3.2 The cross space-time relative risk function

Selection of a proper control function plays an important
role in STRRF analysis, although this selection may be
difficult in an empirical analysis because of a lack of data
(e.g. daytime population and disaggregated data).
However, the cross-STRRF employs a control function
based on Markov chain theory for analyzing the
dynamics of events in space and time, rather than using
an additional dataset for a control function. In certain
types of events (e.g. crime incidents), a strong effect of
past events on a future event occurrence has been recog-
nized from related theories [e.g. routine activities (Cohen
& Felson, 1979), rational choice theories (Clarke &
Cornish, 1985)], and the analyses of crime event repeats
(e.g. Ratcliffe & Rengert, 2008; Short, D’Orsogna,
Brantingham, & Tita, 2009). Specifically, analyzing resi-
dential burglary incidents, Rey et al. (2012) also adopt
Markov chain theory to show a strong relationship
between the probability of future event occurrences and
the prevalence of events in neighboring locations at
a current period. In this paper, a discrete first-order
Markov chain is used, which assumes that the conditional
probability of the present point (t) is only determined by
themost recent past point t � 1ð Þ, not all of the preceding
points in time 1; . . . ; t � 1ð Þ (Haining, 2003):

ProbfZ tð Þ¼z tð ÞjZ 1ð Þ ¼ z 1ð Þ; . . . ; Z t � 1ð Þ¼ z t � 1ð Þg
¼Prob Z tð Þ ¼ z tð ÞjZ t � 1ð Þ ¼ z t � 1ð Þf g:

For the cross-STRRF, the control and case functions
[Equation (5)] are determined by Markov chain theory.
Specifically, this procedure is implemented by repeatedly
dividing STKDE into case and control functions based on
reference times. In other words, the control function of
the cross-STRRF is constructed with preceding events
from a reference time point, and the case function con-
sists of event points that occurred after the reference time
point (Figure 1). Accordingly, the components of the
cross-STRRF can be represented as

f̂case x; y; tð Þ ¼ 1
nh2s ht

Xn
i¼1

ks
x� xi
hs

;
y� yi
hs

� �
kt

t � ti
ht

� �
;

where ti � t;

(6)

and

ĝcontrol x; y; tð Þ ¼ 1
nh2s ht

Xn
i¼1

ks
x� xi
hs

;
y� yi
hs

� �
kt

t � ti
ht

� �
;

where ti<t:

(7)

From these components, the cross-STRRF considers
the impact of events on a certain point from not only
a preceding period, but also its neighbors.

Figure 3 illustrates the difference between STKDE and
the cross-STRRF with a simple synthetic example
(Figure 2). For simplicity, all cell sizes are the same, namely
one, and all events in each cell are summarized with the
same weight without considering distance (i.e. a uniform
density function). The result of using STKDE for the
current events (Figure 3(a)) represents the event density
(e.g. the numbers in the cells) without considering popula-
tion at risk and the effect of past events. Thus, STKDE
detects cells ⅰ and ⅳ as high and low clusters, respectively.
Meanwhile, the cross-STRRF compares the density of past
events (Figure 2(a)) and current events (Figure 2(b)) in the
logarithm form [Equations (6) and (7), respectively],
which captures changes in the densities. Therefore, the
cross-STRRF captures increasing and decreasing densities
in cells ⅱ and ⅲ (Figure 3(b)). Furthermore, this approach
accounts for events along with temporally continuous
influences and a geographically neighboring effect, rather
than dealingwith clusters of events as a separated phenom-
enon at a point in time like STKDE and STRRF do.

3.3 Bandwidths, kernel function selection, and
a significance test

The cross-STRRF has two important components that
are also necessary for the STRRF and STKDE: selection

Figure 1. Components of the cross space-time risk function.
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of a kernel function, and spatio-temporal bandwidths.
First, a bandwidth is a critical component in KDE and
its variants because the degree of smoothness in an
estimated density surface primarily depends on the size
of a bandwidth (Silverman, 1986). Usually, a large band-
width leads to a smooth surface, in which important
spatio-temporal fluctuations in space and time might
not be detected (Nakaya & Yano, 2010). In contrast,
a small bandwidth likely results in a less smooth surface
(i.e. a spiky surface), where prominent patterns of events
are difficult to illustrate. Here, the effects of two optimal
bandwidths, which are generated from a plug-in method
(Scott, 1992) and a space-time K-function (Delmelle,
Delmelle, Casas, & Barto, 2011), are compared based
on the results of STKDE and the cross-STRRF.
Specifically, the Scott’s plug-in estimation finds optimal
bandwidths that minimize the asymptotic mean inte-
grated squared error from an orthogonal multivariate
normal distribution assumption (Nakaya & Yano, 2010).
The plug-in estimation is given as

ĥi ¼ n�1= 3þdð Þσ̂i; (8)

where σ̂i is the standard deviation in the i th dimension,
and d is the number of dimensions. The space-time
Ripley’s K-function (Diggle et al., 1995) evaluates the
presence of space-time clusters at particular spatio-

temporal scales. The spatio-temporal scale shows the
clusters of events that can be used as candidates for
optimal bandwidths of STKDE (e.g. Delmelle et al., 2014).

Second, a proper choice of a kernel function is
required for the cross-STRRF and STKDE. Although
the choice of a kernel function is less critical than the
size of a bandwidth (Kelsall & Diggle, 1995a;
Silverman, 1986), the standard Gaussian density func-
tion tends to produce more smooth general KDE sur-
faces than other widely used kernel functions (e.g.
quadratic, uniform, triangular, and negative exponen-
tial density functions) (Borruso, 2008; Levine, 2010).
Thus, this analysis uses the Gaussian density function
to highlight more general trend. With the indepen-
dence assumption between space and time (e.g.
Brunsdon et al., 2007), the kernel function in
Equations (6) and (7) can be represented as a product
of three univariate Gaussian kernel functions, each of
which may be defined as follows:

k wð Þ ¼
1ffiffiffiffi
2π

p exp � w2

2

� �
; w2<1

0; otherwise

�
: (8)

In this kernel function, the contribution to the density
estimation at a certain point depends on the closeness
of each event to that point (Bailey & Gatrell, 1995). In
other words, close events from an estimated point have
larger impacts than distant ones. With a kernel func-
tion, this approach may overcome the weakness of
space-time scan statistics that distance and time decay
effects are not reflected.

Finally, the cross-STRRF requires an edge correction
to reduce bias around the boundaries of a study area
and time. At the boundaries of a study area, the den-
sities of the cross-STRRF are underestimated, because
they are calculated with the same bandwidths as the
interior of the study area. Thus, density values nearby
the boundaries should be inflated with an edge correc-
tion. For a spatial dimension, this paper utilizes
Berman and Diggle (1989)’s edge correction method,
which inflates density values nearby the boundaries
based on the magnitude of the intersection between
a kernel and the study area. For a temporal dimension,
more events in a temporally buffered area around the
temporal extent are collected (Bailey & Gatrell, 1995).

A significance test for the cross-STRRF can be con-
structed with a permutation test because its statistical
distribution cannot be directly derived due to its strong
spatial autocorrelation among estimated KDE values
(Mclafferty et al., 2000). In detail, the permutation
method shuffles cases and controls in each time period,
which ensures that the spatial and temporal envelope of
the events remains the same as in the original dataset

Figure 2. The synthetic example.

Figure 3. The example results of the spatio-temporal density
and the cross space-time relative risk functions.
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(Guo, 2010). Then, the exact same estimation procedure
is applied to this simulated dataset. In this application, the
permutation step is repeated 999 times to obtain the
reference distribution of the cross-STRRF values at each
voxel employing a Monte Carlo method (Dwass, 1957).
The overall procedure for the permutation test is similar
to that outlined by Kulldorff, Heffernan, Hartman,
Assunção, and Mostashari (2005). In addition to the test
of the cross-STRRF values at each voxel, the permutation
result can be used for a test for global clustering during
each time period. The global clustering test evaluates
whether or not the observed values are consistent with
the underlying population at risk across a study region
(Bivand, Pebesma, & Gómez-Rubio, 2008). That is, the
test statistic is a sum of squared values of the cross-STRRF
across an entire study area in each time period (Kelsall &
Diggle, 1995a; Wheeler, 2007), where the significance of
the test statistic for global clustering also is evaluated
based onMonte Carlomethods (Kelsall & Diggle, 1995b).

In summary, the cross-STRRF can be defined using
Equations (6) and (7), where the standard Gaussian
function is used for the kernel functions, ks �ð Þ and
kt �ð Þ. The cross-STRRF is evaluated with the two dif-
ferent types of bandwidths generated from a plug-in
method and a space-time K-function. The significance
tests for local and global clustering in the cross-STRRF
are conducted with a permutation test. Finally, Berman
and Diggle (1989) buffering methods are applied for
spatial and temporal edge correction methods,
respectively.

4. An application

Crime incidents in the city of Plano, Texas from 2008
to 2012 (5 years) are analyzed with STKDE and the
cross-STRRF. The city of Plano is located in the north-
eastern part of the Dallas-Fort Worth-Arlington

metropolitan statistical area, and has approximately
260,000 residents according to the United States 2010
decennial census. The crime incidents data were
obtained from the City of Plano Police Department.
These data contain occurrence time and are organized
with a time aggregation at the hour level for computa-
tional simplicity. Among various types of crime, assault
crime incidents are analyzed because night time popu-
lation information (i.e. census data) may not accurately
reflect an underlying population at risk for assault
crime (Waller, Zhu, Gotway, Gorman, & Gruenewald,
2007). Furthermore, assault crime incidents often are
more highly correlated with particular locations, such
as pub leisure zones and shopping streets (Nelson,
Bromley, & Thomas, 2001), than with night time popu-
lation. The sample R code for the cross-STRRF and all
direct volume rendering figures in the Voxler environ-
ment (Golden Software, Colorado) are available online
(https://github.com/hyeongmokoo/crossSTRRF).

This dataset contains 9,301 assault crime incidents
during the 5-year period from 1 January 2008, to
31 December 2012. Figure 4 portrays the distribution
of assault crime incidents in the spatial and temporal
dimensions. The density surface of assault crime inci-
dents, generated by KDE with a 4,100-foot bandwidth,
presents the spatial pattern of the assault incidents
during the entire period. Four clusters, which have
high crime densities greater than 300 assault incidents
per square miles, are arbitrarily extracted to help
understand the spatial distribution of assault crime
incidents (Figure 4(a)). The four assault crime clusters
generally coincide with high-activity areas (Sherman,
Gartin, & Buerger, 1989). Specifically, in Figure 4(a),
Cluster I is found in downtown Plano, and Clusters II,
III, and IV are located in major commercial districts.
The geographic locations of these four clusters are
utilized to compare STKDE and the cross-STRRF

Figure 4. Space and time distributions of assault incidents in the city of Plano, (a) KDE for a spatial distribution (the number of
incidents per square mile), and (b) a time series incidents histogram with two-week intervals.
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results later in this section. Figure 4(b) shows frequen-
cies of assault incidents aggregated into two-week
intervals. Overall, the frequency of incidents decreases
exhibiting local variation.

Figure 5 shows the direct volume rendering of STKDE,
where each voxel has different opacity and optical colors
based on its density value (Nakaya & Yano, 2010), which
provides an instinctive display of the density changes in
the space-time cube. Each voxel has the spatial resolution
of 300-by-300 feet and the temporal resolution of 14 days;
4,259,840 voxels are used. In addition, four vertical lines
are inserted to represent the centers of the clusters (see
Figure 4(a)). These results are generated with two differ-
ent types of optimal bandwidth selection methods: (1)
Scott’s plug-in estimates, and (2) a space-time K-function
with spatial and temporal bandwidths. The estimated
values are x = 3,378 feet, y = 2,044 feet, and 115 days for
(1), and x and y = 4,100 feet and 239 days for (2). In the
result of the space-time K-function, the strongest cluster-
ing, which shows the largest difference between the
space-time K-function and the product of separate spatial
and temporal K-functions (Delmelle et al., 2011), is found
at spatial and temporal scales with 25,300 feet and
85 days. However, the optimal bandwidths are chosen
from the second strongest clustering, because the spatial
bandwidth from the strongest clustering is too large to
capture local variations.

The density distribution generated from the space-
time K-function (Figure 5(b)) exhibits an over smoothed
surface compared with results with the plug-in estimate.
This outcome shows only one large cluster at the location
of Cluster I, which coincides with the downtown. In
contrast, the volume rendering image based on the
plug-in estimate (Figure 5(a)) displays more detailed
changes in the crime density distribution. Specifically,

the geographical region of Cluster I shows a high assault
incidents density throughout across all time periods,
although the density values show a small variation in
the temporal dimension. This result indicates that the
density of assault incidents is consistently high in the
downtown area. In contrast, the other clusters, especially
Clusters II and III, have short temporal durations. That is,
Cluster III appears at the bottom of the space-time cube
(i.e. high density in 2008), and Cluster II appears at the
top of the cube (i.e. high density in 2012).

Figure 6(a,b) present the cross-STRRF results in
volume rendering images. The cross-STRRF uses the
same bandwidth for the case and control kernel functions
in order to equally cover spatial and temporal extents in
the numerator and denominator of the ratio like a general
STRRF does (Wheeler, 2007). As for the STKDE, the
cross-STRRF is conducted with plug-in estimates and
a space-time K-function. The computing times of the
cross-STRRF are 36.25 and 38.84 seconds with the esti-
mated bandwidth of Scott’s plug-in and a space-time
K-function, respectively. An Intel i5-7500 processor
with 3.40GHz of clock rate was used for this calculation.
The computing time can vary with the number of voxels
and the size of bandwidths (Delmelle et al., 2014).
Overall, the volume rendering image of the cross-
STRRF obtained with the plug-in estimate (Figure 6(a))
is less smoothed than the one obtained with the space-
time K-function (Figure 6(b)). The spatio-temporal pat-
tern of clustering changes may not be clearly displayed in
Figure 6(a). In contrast, Figure 6(b) has a more smoothed
surface, which might help to foster an understanding of
general spatial and temporal dynamics of the crime inci-
dent patterns.

Explicitly, the cross-STRRF result with the space-time
K-function bandwidth (Figure 6(b)) reveals a remarkable

Figure 5. The spatio-temporal density of assault incidents (the number of incidents per square mile per week). (a) from Scott’s plug-
in and (b) from a space-time K-function.
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characteristic of the cross-STRRF that captures spatio-
temporal locations in dramatic event density changes.
Figure 6(c) is presented to assist the understanding of
the characteristics of the cross-STRRF by adding two
vertical planes to the space-time K-function result
(Figure 6(c)), where these planes intersect each other at
the centers of Clusters II and III. Specifically, although
Cluster I is prominent in the result of the STKDE, the
cross-STRRF does not focus on this constantly high den-
sity region. Instead, the cross-STRRF emphasizes the
spatio-temporal dynamics of the incidents density. For
example, the cross-STRRF results (Figure 6(b,c)) capture
an increasing incidents density in the Cluster III region
(i.e. the south-central part of the city) during early 2008,
and a decreasing incidents density during late 2012,
which would not be identified by the STKDE. In contrast,
the Cluster II region (i.e. the north-western part of the
city) clearly shows an increasing density pattern when
compared to the preceding period from October 2012 to
December 2012.

A significance test is constructed for the cross-STRRF
result with the space-time K-function bandwidth (see
Figure 6(b)). Figure 7(a,b) show significant changes in
assault incidents at the voxel level, and the probability
values of the global clustering test at each time period,
respectively. In detail, Figure 7(a) displays significant
isosurfaces for the incident dynamics at the 5% signifi-
cance level, where the increasing (red) and decreasing
(blue) densities of assault incidents have been compared
with their corresponding previous densities. The signifi-
cant isosurfaces help to exhibit considerable changes in
the incidents density in present and near future periods.
For example, the Cluster I region (see Figure 5) has no
significant isosurface because this region has
a continuously high density of incidents. In contrast,
Figure 5(a) clearly captures a significantly increasing iso-
surface in the Cluster IV region in late 2011, and another
in the Cluster II region in late 2012. The Cluster III region
shows an alternating appearance of increasing and
decreasing isosurfaces. That is, the significant increasing

Figure 6. The cross space-time relative risk functions of assault incidents. (a) from Scott’s plug-in, (b) from a space-time K-function,
and (c) based upon slices of a space-time K-function.
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isosurface in early 2008 is followed by a significant
decreasing isosurface in this region. Then, in late 2012,
a significant decrease in density of assault incidents
appears again. Another observation appears in the
south-east of the study area. Figure 6 shows that opposite
values of the cross-STRRF are observed along the tem-
poral axis in this region, which is suspected to happen due
to an over-inflation by edge correction. However, signifi-
cant isosurfaces exist only in early 2008 (Figure 5(a)).

Figure 7(b) shows the p-values of the test statistic for
global dynamics in each time period that provides
a summary measure for spatial dynamics in a given
time period. A significant p-value means that the den-
sities of the crime incidents in a future period do
remain similar with a preceding period across the
study area in a given period. In Figure 7(b), the sig-
nificant dynamics of the density mainly appear around
between May 2008 and July 2009. That is, in this
period, the city of Plano has experienced dramatic
changes in the spatial distribution of the assault crime
density. For example, in May 2008, a sharp decreasing
pattern of the crime density is mainly found around
the Cluster II region (Figure 6(a)), and, in contrast,
a dramatic increasing pattern is detected around
Cluster III from August 2008 to November 2008. In
addition, from May 2009 to July 2009, increasing and
decreasing patterns of the density are founded in
northwest of the city and the Cluster III region, respec-
tively. Also, the p-value less than 0.05 in
November 2011 is due to an increasing pattern of the
density around the Cluster IV region. In contrast, other
time periods generally have densities consistent with
their corresponding preceding periods, except for the
time period from May 2008 to July 2009.

5. Conclusion

This paper proposes the cross-STRRF by reexpressing
the general STKDE in terms of case and control func-
tions in order to detect spatio-temporal regions that
experience dramatic changes in their density of events.
This paper also presents a comparison between STKDE
and the cross-STRRF with an application of assault
incidents in the city of Plano, Texas. The application
results show that the cross-STRRF has three advanta-
geous characteristics compared to the STKDE and the
general STRRF, which is a main contribution of this
paper to the literature. First, the cross-STRRF empha-
sizes the spatio-temporal dynamics of events by compar-
ing the probabilities of these events at each location and
its neighbors in a future period with those in
a preceding period. However, the STKDE accounts for
clusters of events as a separate phenomenon at a point
in time without considering spatio-temporally continu-
ous effects of events. Second, unlike STRRF, the cross-
STRRF does not require an additional dataset for the
population at risk because it directly compares the den-
sity of events in a future period to those in a preceding
period. Thus, this characteristic can help the cross-
STRRF easily apply to various types of point events.
Furthermore, the cross-STRRF can avoid a potential
error that comes from the assumption of a constant
population at risk within a given spatio-temporal unit
when using common census data for a fixed time inter-
val with a bounded enumeration unit as the population
at risk. Third, the test statistics provide a summary of
the cross-STRRF, which promotes an intuitive under-
standing of the results. Specifically, results from the local
test help to find and display only the significant changes

Figure 7. The significant clusters of the cross-space-time relative functions for assault incidents. (a) local clustering by space and
time, and (b) global clustering by time period.
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in event densities of spatio-temporal regions, whereas
results from the global test in each time period provide
summary measures for spatial dynamics over time.

Some limitations to this research are worth addres-
sing in future studies. First, because the result of the
cross-STRRF is calculated in a predetermined size of
voxels, the variation within a voxel cannot be identi-
fied. The small size of a voxel is preferred for detailed
representation, but it might require extremely intensive
computation. Thus, determining an optimal voxel size
for the presentation and calculation of the cross-STRRF
is necessary, giving consideration to the size of a study
area and the distribution of events. Second, similar to
KDE and STKDE, the smoothness of cross-STRRF
surfaces primarily is determined by the sizes of spatial
and temporal bandwidths. That is, results can be dra-
matically altered by changing the sizes of the band-
widths. Although this paper adopts the well-known
optimal bandwidth selection methods for the cross-
STRRF, further investigation is necessary to examine
the impact of bandwidth size on a cross-STRRF result.
Third, the spatio-temporal densities in both STKDE
and the cross-STRRF are derived under the first-order
separable assumption between space and time dimen-
sions. This separable assumption has been utilized in
space-time modeling in the literature (e.g. Delmelle
et al., 2014; Nakaya & Yano, 2010; Porter & Reich,
2012). However, an approach to accommodate depen-
dence in a space-time structure (i.e. interaction
between space and time components) need to be
further investigated in future research (e.g. Celik,
Shekhar, Rogers, & Shine, 2008; Gabriel et al., 2013;
Griffith, 2012; Knorr-Held, 2000). Finally, the cross-
STRFF could be further extended by using network-
based distances instead of Euclidean distances
(Borruso, 2008; Okabe, Satoh, & Sugihara, 2009).
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